Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Michael Twa and Salavat Aglyamov.
Connection Strength

1.746
  1. Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography. Transl Vis Sci Technol. 2025 Jan 02; 14(1):26.
    View in: PubMed
    Score: 0.246
  2. Micron-scale hysteresis measurement using dynamic optical coherence elastography. Biomed Opt Express. 2022 May 01; 13(5):3021-3041.
    View in: PubMed
    Score: 0.204
  3. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: Repeatability and reproducibility. J Biomech. 2021 05 24; 121:110427.
    View in: PubMed
    Score: 0.190
  4. In Vivo Human Corneal Shear-wave Optical Coherence Elastography. Optom Vis Sci. 2021 01 01; 98(1):58-63.
    View in: PubMed
    Score: 0.186
  5. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography. Biomed Opt Express. 2020 Jun 01; 11(6):3301-3318.
    View in: PubMed
    Score: 0.179
  6. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography. Optom Vis Sci. 2018 04; 95(4):299-308.
    View in: PubMed
    Score: 0.154
  7. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed Opt Express. 2014 May 01; 5(5):1419-27.
    View in: PubMed
    Score: 0.117
  8. Acoustic Radiation Force Optical Coherence Elastography of the Crystalline Lens: Safety. Transl Vis Sci Technol. 2024 Dec 02; 13(12):36.
    View in: PubMed
    Score: 0.061
  9. In vivo assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography. Biomed Opt Express. 2022 May 01; 13(5):2644-2654.
    View in: PubMed
    Score: 0.051
  10. Micro Air-Pulse Spatial Deformation Spreading Characterizes Degree of Anisotropy in Tissues. IEEE J Sel Top Quantum Electron. 2021 Jul-Aug; 27(4).
    View in: PubMed
    Score: 0.046
  11. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus. Invest Ophthalmol Vis Sci. 2020 11 02; 61(13):7.
    View in: PubMed
    Score: 0.046
  12. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J Cataract Refract Surg. 2018 Aug; 44(8):1023-1031.
    View in: PubMed
    Score: 0.039
  13. Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography. Biomed Opt Express. 2017 Jan 01; 8(1):349-366.
    View in: PubMed
    Score: 0.035
  14. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. J Mech Behav Biomed Mater. 2017 02; 66:87-94.
    View in: PubMed
    Score: 0.035
  15. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography. Invest Ophthalmol Vis Sci. 2016 07 01; 57(9):OCT112-20.
    View in: PubMed
    Score: 0.034
  16. Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking. IEEE J Sel Top Quantum Electron. 2016 May-Jun; 22(3).
    View in: PubMed
    Score: 0.033
  17. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study. Phys Med Biol. 2015 May 07; 60(9):3531-47.
    View in: PubMed
    Score: 0.031
  18. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation. J Biomed Opt. 2015 Feb; 20(2):20501.
    View in: PubMed
    Score: 0.031
  19. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo. J Biomed Opt. 2013 Dec; 18(12):121503.
    View in: PubMed
    Score: 0.028
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.